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Mathematical foundation of the novel concept of quantum tensor product by Zanardi

et al is rigorously established. The concept of relative quantum entanglement is naturally

introduced and its meaning is made clear both mathematically and physically. For a finite

or an infinite dimensional vector space W the so called tensor product partition (TPP) is

introduced on End(W ), the set of endmorphisms of W , and a natural correspondence is

constructed between the set of TPP’s of End(W ) and the set of tensor product structures

(TPS’s) of W . As a byproduct, it is shown that an arbitrarily given wave function belonging

to an n-dimensional Hilbert space, n being not a prime number, can be interpreted as a

separable state with respect to some man-made TPS, and thus a quantum entangled state

of a many-body system with respect to the “God-given” TPS can be regarded as a quantum

state without entanglement in some sense. The concept of standard set of observables is

also introduced to probe the underlying structure of the object TPP and to establish its

connection with practical physical measurement.

I. INTRODUCTION

Quantum entanglement is a fundamental concept of quantum mechanics and plays a central role

in quantum information processing [1]. It has also motivated many investigations in mathematical

physics[2, 3]. What is less obvious is the fact that quantum entanglement is not an intrinsically

defined concept. For example, the state of a bi-particle system described by the separable wave

function with respect to the two position coordinates is generally an entangled one with respect to

the center of mass and relative coordinates. It seems that this point has been ignored for a long

time by physicists. But recently Zanardi et.al have brought this problem to our attention in the

context of quantum information. They explicitly point out that whether a state is an entangled

one or not depends on the tensor product structure (TPS) of the state space [4, 5] and they

argue that quantum system can be partitioned into the so called virtual subsystems according to a

man-made TPS selected by a set of observables operationally relevant in the sense of interactions

and measurements. Accordingly, quantum entanglement is observable induced and hence relative.

As a matter of fact, we have in some sense considered the relativity of quantum entanglement
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in the adiabatic separation of the fast and slow variables of a composite system by means of the

Born-Oppenheimer approximation [6, 7].

In this paper, to characterize the above mentioned man-made TPS and the related quantum

entanglement we develop a general algebraic approach from the view point of observable algebra.

Along this line, we manage to show that a quantum state can justifiably be called entangled or

unentangled with respect to a particular partition of the observable algebra. And among others,

we can show that in an n-dimensional Hilbert space W where the dimension n is not a prime,

an arbitrarily given quantum state |s〉 ∈ W is a separable one with respect to some man-made

TPS of W = Vk′ ⊗′ Vl′ where Vk′ ,Vl′ are respectively k′ and l′ dimensional subspaces of W .

Particularly, an entangled state in W with respect to the natural (or “a priori God-given” ) TPS

W = Vk ⊗ Vl with n = kl , can always be decoded as a separable state with respect to some

artificially introduced TPS. But this is only one side of the coin. It is in fact equally true that when

the dimension of W is not a prime an arbitrarily given quantum state |s〉 ∈ W is an entangled

one with respect to some man-made TPS. In short, we have made it mathematically clear that

it is impossible to make a clear cut between entanglement and unentanglement as expected. To

emphasize the physical aspect of the TPS of state space we also show how it is related to the so

called complete set of observables.

It should be pointed out that the main idea of this paper originates from the remarkable

observations implied in the interesting paper by Zanardi et al[4, 5]. But in this paper we prove

the uniqueness theorem concerning the TPS related to a particular partition of the observable

algebra while only the existence theorem is proved in the original paper. Thanks to the uniqueness

theorem we can characterize entanglement from the view point of partition of observable algebra.

Moreover, the whole theory is here developed within strict mathematical framework and thus some

vague points have been clarified. Especially, we have weakened the conditions for the partition of

observable algebra and developed a method which is free of the restriction from dimension. Indeed,

most of the results obtained in this paper are valid in the infinite dimensional case as well as in the

finite dimensional case. As we do not wish to restrict ourselves to the finite dimensional case from

the very beginning some proofs become inevitably more complicated. But our effort is rewarded: we

finally clarify the arguments about the entanglement of identical particle system. It is found that

different definitions of entanglement for distinguishable-particle tacitly presuppose different TPS’s

corresponding to the measurement of different observables, and from our approach a separability

criterion for two-identical particle system can be correctly given without any contradiction[8, 9].

The rest parts of this paper is organized as follows. In section II we present some basic
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knowledge of module theory and multilinear algebra for later use and fix the notation. The materials

are standard and can be found in any relevant text books (for example see [10]). The reader who is

familiar with these topics can safely skip this section. In section III, we introduce and investigate

the concept of tensor product partition (TPP) of the set of linear operators End(W ) on a finite or

an infinite dimensional vector space W , which turns out to have a close connection with the TPS

of W . In section IV we introduce the concept of complete set of operators to probe the underlying

structure of the TPP of End(W ). With these preparations we study the interrelationship between

the TPP of End(W ) and the TPS of W in section V. Some major propositions are proved in this

section concerning the correspondence between these two objects. For the application in quantum

mechanics, we take into accounts the inner product structure of W in section VI and discuss the

inner product compatible TPS after introducing a natural compatibility condition. In section VII,

we explore the relationship among the TPP, the TPS and the product vector set, and the relativity

of entanglement then becomes clear. Finally, three examples are analyzed in section VIII as an

illustration of the theory and some concluding remarks are made in section IX.

II. PRELIMINARIES

In this paper all the algebras and vector spaces dealt with are over the complex number field

and of countable dimension. Moreover, we will not consider the topology of vector space at all. So

infinite summation does not mean any limit process. Rather, its meaning will be specified in the

context.

First let us review an elementary part of the module theory. Let A be an associative algebra,

V an A module. V is called a irreducible module if it has no nontrivial submodule. If V can be

decomposed into a direct sum of irreducible modules, then it is called decomposable.

Theorem 2.1 Let V be an A module, then (1) V is decomposable if and only if every sub-

module of V is decomposable; (2) V is decomposable only if for any submodule V1 of V there is a

complementary submodule V2: V = V1 ⊕ V2.

Remark If every submodule of V is finitely generated, then the converse of (2) in the above

theorem is true. That is, if for any submodule of V there exists a complementary submodule, then

V is decomposable.

Theorem 2.2 Let V be a decomposable A module, V =
∑

i ⊕Vi the decomposition of V into a

direct sum of irreducible submodules. If U is a irreducible submodule of V, then U is isomorphic

to some Vi.
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Let V and W be A modules. A linear map from V to W is called a module homomorphism if

it commutes with the action of A. An injective and surjective module homomorphism is called a

module isomorphism. The following result concerning module homomorphism is well known.

Theorem 2.3 Let V and W be irreducible A modules, f a homomorphism from V to W . Then

f is either a zero map or an isomorphism.

According to this theorem, given two irreducible modules, to prove that they are isomorphic

we only need to show that there exists a non zero homomorphism between them. This fact will be

used in the next section.

Definition 2.1 An irreducible A module V will be called a normal module if the following

condition is satisfied: every homomorphism f from V to itself is equal to the identity map up to

a scalar multiple.

Remark A finite dimensional irreducible A module is necessarily a normal module by Schur’s

Lemma. But a normal module is not necessarily finite dimensional. So normality in the sense of

Definition 2.1 does not characterize finite dimensionality completely. In this paper we will assume

the normality, instead of the finite dimensionality, of certain modules, and hence our discussion is

applicable to some interesting infinite dimensional cases.

Next let us recall some basic knowledge concerning the concept of tensor product.

Definition 2.2 Let V1, V2 and W be vector spaces, f a bilinear map from (V1, V2) to W. If for

any vector space U and any bilinear map g from (V1, V2) to U there exists a unique linear map h

from W to U such that g = h ◦ f, then (V1, V2, f) is called a TPS of W and W is called a tensor

product of V1 and V2 with respect to f, or simply a tensor product of V1 and V2 if no confusion

will arise.

Conventionally, f is denoted by the symbol ⊗ and W is written as W = V1 ⊗ V2. Here is a

major fact about tensor product: If {xi} and {yj} are two bases of V1 and V2 respectively, then

W = V1 ⊗ V2 if and only if {xi ⊗ yj} is a basis of W. Especially in the finite dimensional case,

(V1, V2, f) is a TPS of W if and only if the image of f spans W and dimW = dimV1 · dimV2.

Definition 2.3 Let (V1, V2,⊗) be a TPS of W. A vector w ∈W is called decomposable if it is

of the form x⊗ y where x ∈ V1 and y ∈ V2.

Obviously, any vector w ∈ W can be written as a sum of decomposable vectors. We call such

a sum an expression of w in terms of decomposable vectors or just an expression of w for short.

Notice that expressions of w may not be unique. The length of an expression of w is defined to

be the number of nonzero decomposable vectors it contains and the rank of w is defined to be the

length of the shortest expressions of w. Then by definition the rank of a decomposable vector is 1.
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The following result about the rank of a vector is useful.

Proposition 2.1 The expression w =
∑

i,jui ⊗ vj is a shortest one if and only if {ui} and

{vj} are linearly independent in V1 and V2 respectively.

Finally we consider End(W ), the set of endmorphisms ofW. Take a ∈ End(V1) and b ∈ End(V2).

Then we can define a bilinear map g from (V1, V2) to W such that g(u, v) = au⊗bv ∀u ∈ V1, v ∈ V2.

So there is a unique endmorphism h of W such that h(u⊗ v) = au⊗ bv. By convention such an h

will be denoted by a⊗b from now on. Thus we have (a⊗b)(u⊗v) = au⊗bv. Denote by S the linear

subspace of End(W ) spanned by the endmorphisms of the form a⊗b. Then (End(V1), End(V2),⊗)

is a TPS of S. Here, ⊗ stands for the bilinear map satisfying ⊗(a, b) = a ⊗ b as the symbol itself

suggests. In the finite dimensional case we have S = End(W ), so End(W ) = End(V1)⊗End(V2).

But when W is of infinite dimension, this is no longer true. We will investigate this problem in

more detail in the next sections.

III. TENSOR PRODUCT PARTITION

In this section and the next one, we introduce the concept of TPP for the endmorphisms of the

finite or infinite dimensional vector space W . In this section, A always stands for End(W ). The

concept of TPP is at the core of this paper. It turns out to be useful in understanding relativity

of quantum entanglement.

Definition 3.1 (a) For ai ∈ A, the summation
∑

iai is called well defined if (
∑

iai)w is a

well defined vector of W. (b) A subset B of A is called an extended subalgebra if it is a subalgebra

in the usual sense and is closed under well defined summation.

Let A1 and A2 be two extended subalgebras of A such that [A1, A2] = 0, namely [a, b] = 0

for a ∈ A1 and b ∈ A2. We denote by A1 ∨ A2 the associative algebra generated by A1 and A2.

By definition A1 ∨ A2 ⊆ A and an element c of A belongs to A1 ∨ A2 if and only if c is of the

well defined summation form
∑

iaibi where ai ∈ A1 and bi ∈ A2. Notice that the sum
∑

iaibi may

contain infinitely many terms but (
∑

iaibi)w contains only finite terms for each w ∈W.

Definition 3.2 The ordered pair (A1, A2) is called a pre-tensor-product partition of A if the

following two conditions are satisfied: (1) [A1, A2] = 0 and A = A1 ∨A2; (2) W is a decomposable

A1 and A2 modules respectively.

For arbitrary extended subalgebras A1 and A2 of A, W becomes A1 and A2 modules in the

natural way. We find that when (A1, A2) is a pre-tensor-product partition of A the modules enjoy

a very nice property.
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Lemma 3.1 If (A1, A2) is a pre-tensor-product partition of A, then all irreducible A1( A2)

submodules of W are isomorphic .

Proof. Since W is a decomposable A1 module, we have the decomposition of W into a direct

sum of irreducible A1 modules:

W =
∑

i

⊕Mi.

It follows that each irreducible A1 submodule is isomorphic to some Mi. We need to show that all

Mi’s are isomorphic to one another. For different indices i, j, we choose c ∈ A such that cMi ⊆Mj

and c|Mi
, the restriction of c to Mi, is nonzero. As A = A1 ∨ A2 we can write c =

∑
k akbk

where ak ∈ A1 and bk ∈ A2. Denote by pl the projection onto Ml. Obviously, pl is an A1 module

homomorphism and we have
∑

lpl = 1, where 1 stands for the identity map. Now c can be rewritten

as

c =
∑

k,l

akplbk.

Notice that plbkMi ⊆Ml and akplbkMi ⊆Ml for each l. So it follows from cMi ⊆Mj that

c|Mi
=
∑

k

akpjbk.

But c|Mi
6= 0, thus there exists a k such that pjbk 6= 0. Finally bk ∈ A2 implies that bk is an A1

module homomorphism. Therefore pjbk is a nonzero A1 module homomorphism from Mi to Mj

, and Mi and Mj are isomorphic according to Theorem 2.3. This proves the lemma for A1. The

parallel result for A2 can be proved in the same way.

�

For a pre-tensor-product partition (A1, A2) , by definition we have the decompositions

W =
∑

i

⊕Mi =
∑

j

⊕Nj ,

where Mi and Nj are irreducible A1 and A2 modules respectively. According to Lemma 2.1, all

Mi’s and all Nj ’s are isomorphic. This allows us to denote them by M and N respectively. For

convenience, M,N will be called characteristic modules, and {Mi} , {Nj} irreducible component

sets, of the partition (A1, A2) .

Definition 3.3 Let (A1, A2) be a pre-tensor-product partition of A. It is called a TPP if its

characteristic modules are normal modules.

Remark In the finite dimensional case the concepts of pre-tensor-product partition and TPP

are equivalent. But in the infinite dimensional cases a pre-tensor-product partition of A may not

be a TPP of A.This is because Schur’s Lemma may be false in the infinite dimensional case.
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Lemma 3.2 If (A1, A2) is a TPP, then A1|Mi
= End(Mi) and A2|Nj

= End(Nj), where {Mi}
( {Nj} ) is an irreducible component set of A1 (A2).

Proof. The notation is the same as in the proof of Lemma 3.1, unless explicitly pointed out. We

use the contradiction method. If A1|Mi
$ End(Mi), then there exists an element ci ∈ End(Mi)

which can not be written as a|Mi
with a ∈ A1. Take c ∈ A such that c|Mi

= ci.We can write

c =
∑

kakbk =
∑

k,l

akplbk.

It then follows that

c|Mi
=
∑

k

akpibk.

On the other hand, pibk|Mi
is an A1 module homomorphism from Mi to Mi, so there is a constant

αk such that pibk|Mi
= αk • 1 because Mi is a normal module by assumption. Thus we can write

c|Mi
=

(
∑

k

αkak

)
|Mi

.

Now we define a =
∑

k αkak. We claim that a ∈ A1. To prove this point, it suffices to show that a

is well defined. In other words, we only need to show that aw contains only finite terms for each

w ∈ W. Note that a|Mi
= c|Mi

is well defined and W =
∑

i ⊕Mi. The well definedness of a then

follows directly from the fact that all Mi’s are isomorphic A1 modules. As a|Mi
= ci we are led to

a contradiction. This proves A1|Mi
= End(Mi). The other conclusion can be proved in the same

way.

�

Let (A1, A2) be a TPP, {Mi} the irreducible component set for A1. According to Lemma 3.1,

for each i we can choose an ordered basis {xji|j = 1, 2, · · · } of Mi such that A1 has the same matrix

representation with respect to these bases. In other words, for each a ∈ A1 there exists a complex

number set {akl|k, l = 1, 2, · · · } , which is independent of the index i, such that

axji =
∑

k

xkiakj,∀i.

Obviously,
⋃

i {xji|j = 1, 2, · · · } is a basis of W. We call such an ordered basis a synchronic basis

with respect to the irreducible component set {Mi} .Actually,
⋃

i {xji|j = 1, 2, · · · } is a synchronic

basis with respect to the irreducible component set {Mi} if and only if the linear map fi from M1

to Mi that sends xj1 to xji is a module isomorphism.
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Now for each j define Nj to be the vector space spanned by {xji|i = 1, 2, · · · } . Then we have

the following result.

Lemma 3.3 (1) {Nj} is the irreducible component set for A2; (2)
⋃

j {xji|i = 1, 2, · · · } is a

synchronic basis with respect to {Nj} .
Proof. (1) Take a set {λj |j = 1, 2, · · · } consisting of distinct complex numbers and define ri ∈

End(Mi) such that rixji = λjxji. Then according to Lemma 3.2, there is r ∈ A1 such that r|Mi
= ri.

As
⋃

i {xji|j = 1, 2, · · · } is a synchronic basis we have rxji = λjxji,∀i. It follows that Nj is none

other than the eigenspace of r corresponding to the eigenvalue λj . But [r,A2] = 0 by definition, so

Nj is stable under the action of A2, that is, Nj is an A2 module. Clearly we have

W =
∑

i

⊕Mi =
∑

j

⊕Nj .

Now it remains to show that Nj is an irreducible module.

If Nj is not irreducible, then by Theorem 1.1 it can be decomposed into a direct sum of at least

two irreducible modules:

Nj =
∑

k

⊕Njk
.

Consider c ∈ A = End(W ) such that cNj1 ⊆ Nj2 and c|Nj1
6= 0. We claim that c /∈ A1 ∨ A2. This

contradicts the condition A1 ∨A2 = End(W ). Hence, it is sufficient to prove the claim.

Denote by pj the projection to Nj . We first prove that for each a ∈ A1 and z ∈ Nj there exists

a complex number α such that pjaz = αz. In fact, for z ∈ Nj we can write

z =
∑

i

αixji, αi ∈ C.

Because
⋃

i {xji|j = 1, 2, · · · } is a synchronic basis with respect to {Mi} , the action of a is of the

form

axji =
∑

k

xkiakj,∀i,

where akj is independent of i.Thus

az =
∑

i

∑

k

αixkiakj,

and

pjaz = ajj

∑

i

αixji = ajjz.
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Now we prove c /∈ A1 ∨A2. If c ∈ A1 ∨A2, then there exist ak ∈ A1, bk ∈ A2 such that

c =
∑

k

akbk.

By assumption cNj1 ⊆ Nj2 $ Nj, so for z ∈ Nj1 we have

cz = pjcz =
∑

k

pjakbkz.

Define zk = bkz. Obviously, zk ∈ Nj1 $ Nj. Then by the above argument for each k there exists a

complex number αk such that pjakzk = αkzk. It now follows that

cz =
∑

k

pjakzk =
∑

k

αkzk ∈ Nj1.

But cz ∈ Nj2 by definition, so cz = 0,∀z ∈ Nj1. This is a contradiction. The proof for the first

part of the lemma is thus completed.

(2) As Nj is an A2 module, for b ∈ A2 most generally the action on the basis element xji can

be written as

bxji =
∑

k

xjkb
j
ki,

where bjki ∈ C depends on the index j. Suppose that
⋃

j {xji|i = 1, 2, · · · } is not a synchronic basis

with respect to {Nj} . Then there exist an element b ∈ A2 and indices j1, j2, k, i such that bj1ki 6= bj2ki.

Since A1|Mi
= End(Mi), there exists an element a ∈ A1 satisfying axj1i = xj2i. It then follows

that axj1k = xj2k,∀k because
⋃

i {xji|j = 1, 2, · · · } is a synchronic basis with respect to {Mi} . Now

consider ab and ba. We have

abxj1i =
∑

k

axj1kb
j1
ki =

∑

k

xj2kb
j1
ki,

baxj1i = bxj2i =
∑

k

xj2kb
j2
ki.

So we come to the conclusion that abxj1i 6= baxj1i. But this is impossible since [A1, A2] = 0 by

definition. The proof is thus completed.

�

Corollary 3.1. Let (A1, A2) be a TPP of End(W ), then there exist an irreducible compo-

nent set {Mi} for A1, an irreducible component set {Nj} for A2, and a basis {xji} such that
⋃

i {xji|j = 1, 2, · · · } is a synchronic basis with respect to {Mi} and
⋃

j {xji|i = 1, 2, · · · } a syn-

chronic basis with respect to {Nj} .
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This corollary follows directly from the above lemma. A basis {xji} with the property specified

in the corollary will be called a standard basis associated with the irreducible component sets {Mi}
and {Nj} .

Corollary 3.2. Let (A1, A2) be a TPP of End(W ), {λj} and {µi} two sets of distinct complex

numbers. Then there exist r ∈ A1, t ∈ A2, and a decompositions of W into direct sum of vector

spaces:

W =
∑

i

⊕Mi =
∑

j

⊕Nj

such that

r|Nj
= λj · 1, t|Mi

= µi · 1

and the standard module decomposition

Mi =
∑

j

⊕Mλj

i , Nj =
∑

i

⊕Nµi

j

where the summations range over all λj’s and all µi’s respectively, and M
λj

i and Nµi

j are one

dimensional. Here M
λj

i stands for the eigenspace of r in Mi corresponding to the eigenvalue λj

and Nµi

j the eigenspace of t in Nj corresponding to the eigenvalue µi.

Proof. According to Corollary 3.1, there exist an irreducible component set {Mi} for A1,

an irreducible component set {Nj} for A2, and a basis {xji} such that
⋃

i {xji|j = 1, 2, · · · } is a

synchronic basis with respect to {Mi} and
⋃

j {xji|i = 1, 2, · · · } a synchronic basis with respect to

{Nj} . Define r, t ∈ A such that

rxji = λjxji, txji = µixji.

It is easy to verify that {Mi} , {Nj} , r, t meet the requirement of Corollary 3.2.

IV. STANDARD COMPLETE SET OF OPERATORS

In the last section, some fine properties for TPP have been proved to prepare for the introduction

of the TPS. In this section we proceed along to probe the underlying structure of TPP, aiming at

describing the TPS of a finite or infinite dimensional vector space W in a constructive way. We

will show how the TPP of End (W ) is determined by particular sets of operators, the so called

standard complete sets of operators, contained in End (W ).
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Definition 4.1 If r, t ∈ A satisfy the conditions specified in Corollary 3.2, then (r, t) is called

a standard complete set of operators of A, and {Mi}, {Nj} are called characteristic sets of r and

t respectively.

Definition 4.2 If (r, t) is a standard complete set of operators of A and (A1, A2) is a TPP of

A such that r ∈ A1 and t ∈ A2, then (A1, A2) is called a TPP containing (r, t) .

It is obvious that, if (r, t) is a standard complete set of operators, then necessarily [r, t] = 0

according to the above definitions.

We have seen that a TPP contains standard complete sets of operators. Now it is natural to

ask how to determine a TPP from a standard complete set of operators. The remaining part of

this section is devoted to this problem.

Proposition 4.1 If (r, t) is a standard complete set of operators of A, then there exists a TPP

(A1, A2) containing (r, t) .

Proof. By the definition of complete set of operators, there are two sets of distinct complex

numbers {λj} and {µi} and two decompositions of W into direct sum of subspaces

W =
∑

i

⊕Mi =
∑

j

⊕Nj

such that

Mi =
∑

j

⊕Cxji, Nj =
∑

i

⊕Cxji

where xji is the common eigenvector of r and t:

rxji = λjxji, txji = µixji.

It then follows that we can define two extended subalgebras A1, A2 ⊆ A such that the following

two conditions are satisfied: (1) A1|Mi
= End(Mi) and A2|Nj

= End(Nj); (2)
⋃

i {xji|j = 1, 2, · · · }
becomes a synchronic basis with respect to {Mi} and

⋃
j {xji|i = 1, 2, · · · } a synchronic basis with

respect to {Nj} .We claim that (A1, A2) is a TPP and r ∈ A1, t ∈ A2. The claim is almost

immediate from the definition. In fact, the first condition guarantees that W are decomposable

A1 and A2 modules, and Mi, Nj are respectively irreducible normal A1 and A2 modules, while the

second condition leads to the commutation relation [A1, A2] = 0. The fact that r ∈ A1 and t ∈ A2

is also a direct consequence of the two conditions. Now it remains to show that A1 ∨A2 = A. This

point is proved as follows.

Let a ∈ A be an arbitrary element. It suffices to prove that a ∈ A1 ∨ A2.Define ak,l, bk,l ∈ A

such that

ak,lxji = δkjxli, bk,lxji = δkixjl.
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It is readily verified that {ak,l} and {bk,l} are bases of A1 and A2 respectively. As {xji} is a basis

of W , a is determined by its action on each xji. Generally we can write

axji =
∑

k,l

xklakl,ji, akl,ji ∈ C.

Notice that for each xji, there are only finite nonzero coefficients akl,ji. One can now easily convince

oneself that the expression
∑

j,i

∑
k,lakl,jiaj,kbi,l is a well defined summation and equal to the given

a. Obviously this is an element of A1 ∨A2. The proposition is thus proved.

�

Notice that Proposition 4.1 solves the problem of existence of TPP containing a given complete

set of operators. To probe the problem of uniqueness in some sense, we need to make some more

preparation. The next proposition is also interesting in its own right.

Proposition 4.2 If (A1, A2) is a TPP of A, then A′
1 = A2, A

′
2 = A1. Here A′

i (i = 1, 2) stands

for the commutator of Ai in A: A′
i = {a ∈ A| [a,Ai] = 0} .

Proof. Let {Mi} and {Nj} be irreducible component sets of (A1, A2) , {xji} a synchronic basis

associated with {Mi} and {Nj} . Define ak,l, bk,l ∈ A in the same way as in the proof of Proposition

4.1. Now we prove the proposition in three steps as follows.

(1) If
∑

l

∑
lk
a (lk, l) blk,l = 0, then

∑
lk
a (lk, l) blk,l = 0 for each l, where a (lk, l) ∈ A1. In fact,

we have

(∑
lk
a (lk, l) blk ,l

)
W ⊆Ml,∀l,

so the conclusion directly follows from the decomposition W =
∑

i ⊕Mi.

(2) If
∑

kakbk,l = 0, then ak = 0 for each k, where ak ∈ A1. If, on the contrary, there is some

ai 6= 0, then ai can be written as

ai =
∑

k,l

αk,lak,l,

where there is at least a nonzero coefficient. Suppose that αm,n 6= 0. Then it is readily check that

(
∑

kakbk,l)xm,i 6= 0. This contradicts the condition
∑

kakbk,l = 0. The statement is thus proved.

(3) A2 = A′
1, A1 = A′

2. By definition A2 ⊆ A′
1. So to prove A2 = A′

1, we only need to show that

A′
1 ⊆ A2. Let a ∈ A′

1 ⊆ A. As A1 ∨A2 = A we can express a in the form

a =
∑

l

∑
lk
a (lk, l) blk,l,
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where a (lk, l) ∈ A1. To prove that a ∈ A2 it is sufficient to show that a (lk, l) is equal to the identity

map up to a scalar multiple. In fact, if this is not the case, then there exist an a (lk, l) and some

c ∈ A1 such that [c, a (lk, l)] 6= 0 because A1|Mi
= End(Mi) for every i. On the other hand, we have

0 = [c, a] =
∑

l

∑
lk

[c, a (lk, l)] blk,l.

It then follows from (1) and (2) that [c, a (lk, l)] = 0, for every l and lk. This contradiction proves

that A2 = A′
1. Similarly, we can prove that A1 = A′

2.

�

Corollary 4.1 If (A1, A2) is a TPP of A, then A1 ∩A′
1 = A2 ∩A′

2 = C1.

Proof. First we notice that it is a direct consequence of Proposition 3.2 that A1∩A′
1 = A2∩A′

2.

Let {Mi} and {Nj} be irreducible component sets for A1 and A2 respectively, and {xji} a synchronic

basis associated with them. By definition

Mi =
∑

j

⊕Cxji, Nj =
∑

i

⊕Cxji.

As A1|Mi
= End(Mi) and A2|Nj

= End(Nj) it is clear that C1 ⊆ A1 ∩ A2 = A1 ∩ A′
1. For the

same reason, if a ∈ A1 ∩ A′
1 = A2 ∩ A′

2, then there exist constant sets {αi} , {βj} ⊆ C such that

a|Mi
= αi · 1, a|Nj

= βj · 1. It then follows that all these constants are identical. Thus a ∈ C1, that

is, A1 ∩A′
1 = A2 ∩A′

2 ⊆ C1. This completes the proof.

�

Remark In the finite dimensional case, from this corollary we conclude that if (A1, A2) is a TPP,

then both A1 and A2 are the so called factors.

Lemma 4.1 Let W be a vector space, q a linear transformation of W. If q is diagonalizable

and all of its eigenvalues are distinct, then q is diagonalizable in any q invariant subspace of W.

Before proving this lemma we remark that the conclusion is obvious if W is finite dimensional,

but if this is not the case the lemma seems to need a proof. Certainly, we present the lemma and

its proof here not to claim the originality. Rather, we do so just for completeness.

Proof. Let {λj} be the set of eigenvalues of q. Then we have the decomposition

W =
∑

j

Cxj,

where xj is an eigenvector of q corresponding to the eigenvalue λj : qxj = λjxj . Suppose that

W1 ⊆W is a q invariant subspace, namely, qW1 ⊆W1. For an arbitrary y ∈W1, we can write

y =
∑

j

αj (y)xj , αj (y) ∈ C.
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If there exists y ∈ W1 such that αj (y) 6= 0, then we call λj an eigenvalue related to the subspace

W1. We claim that

W1 =
∑

λj

⊕W λj

where W λj = Cxj and the summation ranges over all the eigenvalues that are related to W1.

Clearly we have

W1 ⊆
∑

λj

⊕W λj .

So to prove the claim it is sufficient to show that for each eigenvalue λj that is related to W1 we

have xj ∈W1. In fact, if λj0 is related to W1, then there exists y ∈W1 such that

y =
∑

j∈I

αj (y)xj

where I is a finite set containing j0 and αj (y) 6= 0, ∀j ∈ I. Suppose that I contains n elements.

Then we have the following system of linear equations:

qiy =
∑

j∈I

αj (y)λi
jxj, i = 1, 2, · · · , n.

As qW1 ⊆ W1, we have qiy ∈ W1, ∀i ∈ I. On the other hand, the determinant of the coefficient

matrix is nonzero since all the λj ’s are distinct. Therefore, we have xj ∈ W1, ∀j ∈ I, especially,

xj0 ∈W1. This proves the claim, and hence the lemma.

�

Lemma 4.2 Let (r, t) be a standard complete set of operators of A (= End(W )), {Mi}, {Nj}
the characteristic sets of r and t respectively. If (A1, A2) is a TPP containing (r, t) , then {Mi},
{Nj} are irreducible component sets for A1 and A2 respectively.

Proof. By definition we have

W =
∑

i

⊕Mi =
∑

j

⊕Nj ,

and

r|Nj
= λj · 1, t|Mi

= µi · 1.

Let us focus on {Mi} . Notice that Mi is none other than the eigenspace of t corresponding to the

eigenvalue µi. As t ∈ A2, we have [t, A1] = 0. It then follows that A1Mi ⊆Mi, that is, Mi is an A1
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module. We observe that proving that {Mi} is a irreducible component set for A1 boils down to

proving that Mi is irreducible as A1 module. The proof is as follows.

Suppose that Mi is not irreducible. Then Mi can be decomposed into a direct sum of nonzero

irreducible modules:

Mi =
∑

k

⊕Mik .

By Lemma 4.1 all Mik ’s are isomorphic. On the other hand, according to Lemma 4.1, r is diago-

nalizable in each Mik . Note that r ∈ A1. Thus r has the same eigenvalues in different Mik ’s. But

this is impossible because by definition all the eigenvalues of r in Mi have the multiplicity 1. In

the same way we can prove that Nj is a irreducible A2 module.

�

Now we are prepared to prove the following result concerning the uniqueness of TPP containing

a given complete set of operators.

Proposition 4.3 Let (r, t) be a standard complete set of operators of A (= End(W )) , (A1, A2)

and (B1, B2) two tensor product partitions containing (r, t) . Then there exists an isomorphism

ϕ ∈ End(W ), diagonal with respect to the basis consisting of common eigenvectors of r and t,

such that B1 = ϕ ·A1 · ϕ−1 and B2 = ϕ ·A2 · ϕ−1.

Proof. Keep the same notation as in the proof of Lemma 4.2. According to Lemma 4.2,

{Mi} is a irreducible component set for both A1 and B1. Fix an index i0 and choose a basis

{xji0} of Mi0 such that rxji0 = λjxji0. Obviously we can extend this basis to a synchronic basis
⋃

i {xji|j = 1, 2, · · · } with respect to {Mi} as irreducible component set for A1 and a synchronic

basis
⋃

i {yji|j = 1, 2, · · · } with respect to {Mi} as irreducible component set for B1. Since r ∈ A1,

B1, we have

rxji = λjxji, ryji = λjyji, ∀i.

It then follows that for each pair of index (i, j) there exists a complex number αji such that

yji = αjixji. This is because that all the eigenvalues of r in Mi are of multiplicity 1. Now define

ϕ ∈ End(W ) such that ϕxji = yji. Then ϕ is an isomorphism diagonal with respect to the basis

{xji} . It is clear that B1 = ϕ · A1 · ϕ−1. Indeed, this relation follows directly from the fact that

A1|Mi
= B1|Mi

= End(Mi). Finally, we consider the set ϕ ·A2 ·ϕ−1. We have
[
B1, ϕ · A2 · ϕ−1

]
= 0,

so by Proposition 4.2 ϕ·A2·ϕ−1 ⊆ B2. Similarly, we can prove ϕ−1·B2·ϕ ⊆ A2. ThusB2 = ϕ·A2·ϕ−1.

This completes the proof.
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�

We have seen that a TPP is determined up to an isomorphism by a standard complete set of

operators contained in it. Now, in the remaining part of this section, we study how to determine

a TPP completely by some standard complete sets of operators satisfying certain conditions. For

convenience, we first introduce a new concept as follows. For p, q ∈ End(W ), we denote by Sp,q

the extended subalgebra of End(W ) generated by them. Let (r, t) , (r′, t′) be standard complete

sets of operators with the characteristic sets {Mi} , {Nj} and {M ′
i} ,
{
N ′

j

}
respectively.

Definition 4.3 (r, t) and (r′, t′) are called complementary if (1) Mi = M ′
i and all Mi’s are

isomorphic normal Sr,r′ modules or (2) Nj = N ′
j and all Nj’s are isomorphic normal St,t′ modules.

Remark Both (1) and (2) cannot be satisfied unless Mi and Nj are both of one dimension.

Next we prove the following results on the construction of TPP.

Proposition 4.4 A TPP contains complementary standard complete sets of operators.

Proof. Let (A1, A2) be a TPP with the irreducible component sets {Mi} , {Nj} . Take a syn-

chronic basis {xji} associated with {Mi} , {Nj} . Then there exists a standard complete set of

operators (r, t) with the characteristic sets {Mi} , {Nj} : rxji = λjxji, txji = µixji. Now define

r̃, t̃ ∈ End(W ) such that:

t̃ = t,

r̃x1i = λ1x1i, r̃ (xji + xj+1 i) = λj+1 (xji + xj+1 i) .

It is readily check that
(
r̃, t̃
)

is a standard complete set of operators contained in (A1, A2). Obvi-

ously all Mi’s are isomorphic Sr,r̃ modules by definition. Now to prove the proposition it suffices

to show that Mi is a normal Sr,r̃ module. Let f : Mi −→ Mi be an Sr,r̃ module homomorphism.

Then we have

rf (xji) = λjf (xji) ,

r̃f (x1i) = λ1f (x1i) , r̃f (xji + xj+1 i) = λj+1f (xji + xj+1 i) .

It follows that there are αj , βj ∈ C such that

f (xji) = αjxji, f (xji + xj+1 i) = βj+1 (xji + xj+1 i) .

We thus conclude that all αj’s must be identical, that is, f = α · 1 for some α ∈ C. Hence, Mi is a

normal Sr,r̃ module.

�
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Proposition 4.5 If (r, t) and
(
r̃, t̃
)

are complementary standard complete sets of operators,

then there exists a unique TPP (A1, A2) such that r, r̃ ∈ A1 and t, t̃ ∈ A2.

Proof. Let us consider the case where r, r̃ have the same characteristic set {Mi} and all Mi’s

are isomorphic normal Sr,r̃ modules. The other case can be discussed in the same way.

Let fi : M1 −→Mi be an Sr,r̃ module isomorphism. By the definition of standard complete set

of operators, there exist bases {xj1} , {x̃j1} of M1 and sets {λj} ,
{
λ̃j

}
of distinct complex numbers

such that

rxj1 = λjxj1, r̃x̃j1 = λ̃j x̃j1.

Let xji = fixj1, x̃ji = fix̃j1. Then according to the proof of Proposition 3.1, there are TPP’s

(A1, A2) and
(
Ã1, Ã2

)
such that (1) r ∈ A1, r̃ ∈ Ã1, t ∈ A2, t̃ ∈ Ã2; (2) ∪i {xji|j = 1, 2, · · · } and

∪i {x̃ji|j = 1, 2, · · · } are synchronic bases with respect to {Mi} as irreducible component sets for

A1 and Ã1 respectively. Since fi is an Sr,r̃ module isomorphism, ∪i {x̃ji|j = 1, 2, · · · } is also a

synchronic basis with respect to {Mi} as irreducible component sets for A1. It then follows that

A1 = Ã1 and hence that A2 = Ã2 as A2 = A′
1 and Ã2 = Ã′

1. Thus (A1, A2) is a TPP meeting the

requirement. This proves the existence.

Now let (B1, B2) be an arbitrary TPP satisfying the condition. To prove the uniqueness we only

need to show that (B1, B2) = (A1, A2) , which is defined above. According to Lemma 4.2, {Mi} is

an irreducible component set for B1. Then there exists a synchronic basis ∪i {yji|j = 1, 2, · · · } with

respect to {Mi} such that yj1 = xj1, j = 1, 2, · · · . As r, r̃ ∈ B1 the linear map gi : M1 −→Mi that

sends yj1 to yji is an Sr,r̃ module isomorphism. But M1 is a normal Sr,r̃ module, so there exists

αi ∈ C such that f−1

i · gi = αi · 1, and we have yji = αixji. It then follows that ∪i {xji|j = 1, 2, · · · }
is also a synchronic basis with respect to {Mi} as irreducible component set for B1. Consequently,

we have A1 = B1 and hence A2 = B2. The uniqueness is thus proved.

�

V. TENSOR PRODUCT STRUCTURE

With the above preparation in concepts we are now in a position to focus on the TPS of a vector

space W, one of the mainstay of this paper. In this section we will establish a correspondence

between the set of TPS of W and the set of TPP of End(W ), revealing the close relation between

these two objects. In this section we denote End(W ) by A.

Definition 5.1 Let (W1,W2,⊗) be a TPS of W, (A1, A2) a TPP of A (= End(W )) , where
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W1,W2 are subspaces of W. (W1,W2,⊗) is called a TPS associated with (A1, A2) if the following

condition is satisfied:

a(u⊗ v) = (au) ⊗ v, b(u⊗ v) = u⊗ (bv) ,

∀a ∈ A1, b ∈ A2, u ∈W1, v ∈W2.

According to this definition, if (W1,W2,⊗) is a TPS associated with (A1, A2) , then W1 and W2

are necessarily A1 and A2 modules respectively. Furthermore, we have the following result.

Lemma 5.1 if (W1,W2,⊗) is a TPS associated with (A1, A2) , then W1 and W2 are irreducible

A1 and A2 modules respectively.

Proof. Suppose, on the contrary, that W1 is not irreducible. Then there exist nonzero A1

modules Wα
1 and W β

1
such that W1 = Wα

1 ⊕W β
1
. Take two nonzero elements x1 ∈ Wα

1 , x2 ∈ W β
1

and an element a ∈ A such that ax1 = x2. It is clear that a /∈ A1 ∨ A2. This contradicts the

condition that A1 ∨A2 = A. That W2 is irreducible can be proved in the same way.

�

Proposition 5.1 Let (W1,W2,⊗) be a TPS of W, where W1,W2 are subspaces of W. Define

A1 = End(W1)⊗1 , {a⊗ 1|a ∈ End(W1)} and A2 = 1⊗End(W2) , {1 ⊗ b|b ∈ End(W2)} . Then

(A1, A2) is a TPP of A and (W1,W2,⊗) is a TPS associated with (A1, A2) . Conversely, if (A1, A2)

is a TPP of A and (W1,W2,⊗) a TPS associated with it, then we have A1 = {a⊗ 1|a ∈ End(W1)}
and A2 = {1 ⊗ b|b ∈ End(W2)} .

Proof. The proof of the first part is immediate, and we would rather omit it. For the second part,

just notice that if {xj} and {yi} are respective bases of W1 and W2, then {W1 ⊗ yi}, {xj ⊗W2} are

irreducible component sets for A1 and A2 respectively and {xj ⊗ yi} is a standard basis associated

with them. The conclusion then follows. Here W1 ⊗ yi = {u⊗ yi|u ∈W1} as the symbol suggests,

and xj ⊗W2 is understood similarly.

�

This proposition tells us that each TPS of the form (W1,W2,⊗) with W1,W2 ⊆W is associated

with some TPP determined by it. Naturally we want to ask whether a TPP can determine a TPS

associated with it. The answer is positive.

Theorem 5.1 Each TPP of A determines a TPS associated with it.

Proof. Let (A1, A2) be a TPP of A. Then there are irreducible component sets {Mi} and

{Nj} for A1 and A2 respectively. By Corollary 3.1 to Lemma 3.3 we can choose a synchronic

basis{xji}associated with {Mi} and {Nj} . Now fix a pair of index (i0, j0) and take W1 = Mi0 ,W2 =
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Nj0. By definition {xji0|j = 1, 2, · · · } and {xj0i|i = 1, 2, · · · } are bases of W1 and W2 respectively.

Thus we can define a bilinear map ⊗ from W1 ×W2 to W such that xji0 ⊗ xj0i = xji. We claim

that (W1,W2,⊗) is a TPS of W associated with (A1, A2) . As {xji0 ⊗ xj0i} = {xji} is a basis of

W, (W1,W2,⊗) is obviously a TPS of W. According to the definition, to prove that it is a TPS

associated with (A1, A2) we need to show that

a (xji0 ⊗ xj0i) = (axji0) ⊗ xj0i, ∀a ∈ A1,

b (xji0 ⊗ xj0i) = xji0 ⊗ (bxj0i) , ∀b ∈ A2.

In fact, if

axji0 =
∑

kxki0akj, akj ∈ C,

then

axji =
∑

kxkiakj , ∀i

since {xji} is a standard basis. It then follows that

a (xji0 ⊗ xj0i) = axji =
∑

kxkiakj

and

(axji0) ⊗ xj0i = (
∑

kxki0akj) ⊗ xj0i =
∑

kxkiakj.

This proves that a (xji0 ⊗ xj0i) = (axji0)⊗xj0i. The other equation can be proved in the same way.

We observe that in the finite dimensional case, if (A1, A2) is a TPP of A, then we have A =

A1 ⊗A2 as a direct consequence of the above theorem. This justifies calling (A1, A2) a TPP of A.

�

Remark Theorem 4.1, together with the second half of Proposition 4.1, provides a simple proof

for Proposition 3.2.

Now we consider to what extent a given TPP determines the TPS associated with it.

Definition 5.2. Two tensor product structures (U1, U2,⊗1) and (W1,W2,⊗2) of W are called

equivalent if at least one of the following two conditions is satisfied: (1) There are vector space

isomorphisms ϕ1: U1 −→ W1, ϕ2: U2 −→W2, and a complex number α such that

u1 ⊗1 u2 = α (ϕ1u1 ⊗2 ϕ2u2) , ∀u1 ∈ U1, u2 ∈ U2;
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(2) There are vector space isomorphisms ϕ1: U1 −→ W2, ϕ2: U2 −→ W1, and a complex number

α such that

u1 ⊗1 u2 = α (ϕ2u2 ⊗2 ϕ1u1) ,∀u1 ∈ U1, u2 ∈ U2.

The equivalent class of the TPS (W1,W2,⊗) is denoted by (W1,W2,⊗), and the set of equivalent

classes of tensor product structures of W is denoted by T (W ) .

Proposition 5.2 If two tensor product structures are associated with the same TPP, then they

are equivalent.

Proof. Let (W1,W2,⊗) be the TPS defined in the proof of Theorem 3.1. It is then sufficient

to show that an arbitrary TPS (U1, U2,⊗1) associated with the TPP (A1, A2) is equivalent to

(W1,W2,⊗).

By Lemma 5.1, U1, U2 are irreducible modules. So U1, U2 are isomorphic to W1,W2 as A1

and A2 modules respectively. It then follows that there exist isomorphisms ϕ1: U1 −→ W1, ϕ2:

U2 −→W2, such that

a · ϕ1 = ϕ1 · a, b · ϕ2 = ϕ2 · b, ∀a ∈ A1, b ∈ A2.

Now fix a standard complete set of operators {r, s} such that rxji = λjxji, sxji = µixji. By

definition, W1 = Mi0 ,W2 = Nj0 and xji0 ⊗ xj0i = xji. As r ∈ A1, s ∈ A2, we then have

r (ϕ1xji0 ⊗1 ϕ2xj0i) = λj (ϕ1xji0 ⊗1 ϕ2xj0i) ,

s (ϕ1xji0 ⊗1 ϕ2xj0i) = µi (ϕ1xji0 ⊗1 ϕ2xj0i) ,

namely, (ϕ1xji0 ⊗ ϕ2xj0i) belongs to the same joint eigenspace of {r, s} as xji. But the joint

eigenspaces of {r, s} are all one dimensional, so we conclude that for each pair of index (j, i)

there exists a complex number αji such that

xji0 ⊗ xj0i = αji (ϕ1xji0 ⊗1 ϕ2xj0i) .

To prove the proposition we have to show that αji is independent of (j, i) .

For different indice j1, j2, take a ∈ A1 such that axj1i0 = xj1i0 + xj2i0 . Note that the existence

of such a is guaranteed by the fact that A1|Mi0
= End(Mi0). We then have

a (xj1i0 ⊗ xj0i) = αj1ia (ϕ1xj1i0 ⊗1 ϕ2xj0i) ,

(axj1i0) ⊗ xj0i = αj1i (aϕ1xj1i0) ⊗1 (ϕ2xj0i) = αj1i (ϕ1axj1i0) ⊗1 (ϕ2xj0i) ,

(xj1i0 + xj2i0) ⊗ xj0i = αj1i (ϕ1 (xj1i0 + xj2i0)) ⊗1 (ϕ2xj0i) .
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Therefore,

αj1i (ϕ1xj1i0 ⊗1 ϕ2xj0i) + αj2i (ϕ1xj2i0 ⊗1 ϕ2xj0i) = αj1i (ϕ1xji0 ⊗1 ϕ2xj0i) + αj1i (ϕ1xj2i0 ⊗1 ϕ2xj0i) ,

αj2i (ϕ1xj2i0 ⊗1 ϕ2xj0i) = αj1i (ϕ1xj2i0 ⊗1 ϕ2xj0i) .

It follows directly that αj1i = αj2i. In the same way, we can prove that αji1 = αji2 for different

indices i1, i2. Consequently, all αji’s are equal. The proposition is thus proved.

�

Definition 5.3 Two tensor product partitions (A1, A2) and (B1, B2) are called equivalent if

(A1, A2) = (B1, B2) or (A1, A2) = (B2, B1) . The equivalent class of (A1, A2) is denoted by

(A1, A2), and the set of equivalent classes of tensor product partitions of End(W ) is denoted by

P (W ).

Lemma 5.2 TPS’s associated with equivalent TPP’s are equivalent.

Proof. Let (A1, A2) and (B1, B2) be equivalent TPP’s. If (A1, A2) = . (B1, B2) , then the

assertion is just what Proposition 4.2 says. Now suppose that (A1, A2) = (B2, B1) . Let (U1, U2,⊗1)

and (W1,W2,⊗2) be TPS’s associated with (A1, A2) and (B1, B2) respectively. We define a bilinear

map ⊗: U2 ×U1 −→W such that u2 ⊗u1 = u1 ⊗1 u2, ∀u1 ∈ U1, u2 ∈ U2. It is readily verified that

(U2, U1,⊗) is a TPS associated with (B1, B2) . It then follows from Proposition 4.2 that there are

vector space isomorphisms ϕ1: W1 −→ U2, ϕ2: W2 −→ U1, and a complex number α such that

W1 ⊗2 W2 = α (ϕ1w1 ⊗ ϕ2w2) = α (ϕ2w2 ⊗1 ϕ1w1) , ∀w1 ∈W1, w2 ∈W2.

This means, according to Definition 4.2, that (U1, U2,⊗1) and (W1,W2,⊗2) are equivalent.

�

Lemma 5.3 An arbitrary TPS of W is equivalent to a TPS of the form (W1,W2,⊗) with

W1,W2 ⊆W.

Proof. Let (V1, V2,⊗1) be an arbitrary TPS of W, and {xi} , {yj} be respective bases of V1, V2.

Define two subspaces W1,W2 of W as

W1 = V1 ⊗1 y1 , {u⊗1 y1|u ∈ V1} ,

W2 = x1 ⊗1 V2 , {x1 ⊗1 v|v ∈ V2} ,

and a bilinear map ⊗: W1 ×W2 −→W such that

(xi ⊗1 y1) ⊗ (x1 ⊗1 yj) = xi ⊗1 yj.

It is then straightforward to check that (W1,W2,⊗) meets the requirement.
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Let τ denote the map from the set of TPP’s of End(W ) to the set of TPS”s of W under which

a TPP is sent to a TPS associated it. By Lemma 5.2 τ induces a map τ from P(W ) to T (W ) :

τ(A1, A2) = τ (A1, A2).

It follows from Proposition 5.1 and Lemma 5.3 that τ is surjective. Later we will prove that it is

also injective.

�

VI. INNER PRODUCT COMPATIBLE TENSOR PRODUCT STRUCTURE

Up to now we have not taken into accounts the inner product structure of W. But in quantum

mechanics, a physical space of quantum states should be endowed with a reasonable inner product

so that the probability explanation of wave function could make sense. In this section we proceed

along to study the TPS in connection with the inner product structure. We will introduce a natural

compatibility condition between these two structures as the starting point. Further study will still

be developed in the context of TPP. Through out this section W stands for a vector space with

the inner product < , >, and W1,W2 stand for subspaces of W.

Definition 6.1. A TPS (W1,W2,⊗) of W is called compatible with the inner product < , >

if 〈u1 ⊗ u2, v1 ⊗ v2〉 = 〈u1, v1〉 〈u2, v2〉 for all u1, v1 ∈W1 and u2, v2 ∈W2.

Definition 6.2. Let V1, V2 be two modules with the inner products < , >1and < , >2respectively.

V1, V2 are called U−homomorphic (isomorphic) if there exists an inner product preserving module

homomorphism (isomorphism) f from V1 to V2 : 〈fv1, fv2〉2 = 〈v1, v2〉1 , for all v1 ∈ V1, v2 ∈
V2.Such a f will be called a U−homomorphism (isomorphism) of module.

Definition 6.3 A TPP (A1, A2) of End(W ) is called compatible with the inner product < ,

> if there exist irreducible component sets {Mi} , {Nj} of (A1, A2) such that (1) different Mi’s

(Nj’s) are orthogonal to one another with respect to < , >; (2) all Mi’s (Nj ’s) are U−isomorphic

A1(A2) modules.

Lemma 6.1. A TPP (A1, A2) of End(W ) is compatible with the inner product < , > if and

only if there exist irreducible component sets of (A1, A2) which have an orthonormal standard basis

with respect to < , > .

Proof. If (A1, A2) is compatible with the inner product, then there exist irreducible component

sets {Mi} for A1, all Mi’s being U−isomorphic. Let fi be the inner product preserving isomorphism

from M1 to Mi. Take an orthonormal basis {xj1} of M1, and define xji = fixj1. It is evident that
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⋃
i {xji|j = 1, 2, · · · } is an orthonormal synchronic basis with respect to {Mi}. Now define Nj

to be the vector space spanned by {xji|i = 1, 2, · · · }, it then follows from Lemma 2.3 that {xji}
is an orthonormal standard basis associated with {Mi} , {Nj} . This proves the necessity. For the

sufficiency, just observe that if {xji} is an orthonormal standard basis associated with {Mi} , {Nj} ,
then the linear maps fi : M1 −→Mi which sends xj1 to xji and gj : N1 −→ Nj which sends x1i to

xji are U−isomorphisms of module.

�

Remark One easily sees from the proof of Lemma 5.1 that in Definition 5.3 the two conditions

for {Mi} and the two conditions for {Nj} are not independent. They actually imply each other.

We now probe the relation between the inner product compatible TPS of W and the inner

product compatible TPP of End(W ).

Proposition 6.1 Let (A1, A2) be a TPP of End(W ), (W1,W2,⊗) a TPS of W associated with

(A1, A2) . If (W1,W2,⊗) is compatible with the inner product, then so is (A1, A2) .

Proof. Let {xj} , {yi} be orthonormal bases of W1 and W2 respectively and define Mi = W1⊗yi,

Nj = xj ⊗W2. It follows that {Mi} , {Nj} are irreducible component sets of (A1, A2) and {xj ⊗ yi}
is a standard basis associated with them. If (W1,W2,⊗) is compatible with the inner product,

then {xj ⊗ yi} is an orthonormal basis of W and hence an orthonormal standard basis associated

with {Mi} , {Nj} . The proposition thus follows from Lemma 6.1.

Conversely, we have the following result.

Proposition 6.2 If (A1, A2) is an inner product compatible TPP of End(W ), then there exists

an inner product compatible TPS of W associated with it.

Proof. According to Lemma 5.1, we can choose irreducible component sets {Mi} , {Nj} of W

and an orthonormal standard basis {xji} associated with them. Fix a pair of index (i0, j0), take

W1 = Mi0,W2 = Nj0 and define a bilinear map ⊗ from W1 ×W2 to W such that xji0 ⊗ xj0i = xji,

as in the proof of Theorem 3.1. We can then check that (W1,W2,⊗) is a desired TPS of W. That

(W1,W2,⊗) is a TPS associated with (A1, A2) has been proved in Theorem 3.1. It remains to show

that for all u1, v1 ∈W1 and u2, v2 ∈W2,

〈u1 ⊗ u2, v1 ⊗ v2〉 = 〈u1, v1〉 〈u2, v2〉 .

But this is an immediate consequence of the sequi-linearity of the inner product < , > and the

relation:

〈xj1i0 ⊗ xj0i1, xj2i0 ⊗ xj0i2〉 = 〈xj1i0, xj2i0〉 〈xj0i1, xj0i2〉 ,
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which follows from the assumption that {xji} is an orthonormal basis of W.

Next we turn to the problem of characterizing inner product compatible TPP.

Definition 6.4 Let B be an extended subalgebra of End(W ). If for every element b ∈ B whose

adjoint operator exists we have b∗ ∈ B, where as usual b∗ stands for the adjoint operator of b, then

B is called a quasi-star extended subalgebra.

Proposition 6.3 Let (A1, A2) be a TPP of End(W ). If it is compatible with the inner product,

then both A1 and A2 are quasi-star extended subalgebras of End(W ). Conversely, if A1(or A2)

is a quasi-star extended subalgebra and there exists an irreducible component set {Mi}(or Nj) for

A1(or A2) such that different Mi’s (or Nj’s) are orthogonal to one another, then (A1, A2) is

compatible with the inner product.

Proof. If (A1, A2) is compatible with the inner product, according to Lemma 5.1, we can choose

an orthonormal synchronic basis {xji} with respect to some irreducible component set {Mi} for

A1.Let a ∈ A1. We can write

axji =
∑

k

xkiakj,

where akj is a complex number independent of the index i.We observe that the adjoint operator of

a exists if and only if {j|akj 6= 0} is a finite set for each k, and in that case we have

a∗xji =
∑

k

xkiajk,

where ajk stands for the complex-conjugate number of ajk.The fact that {xji} is a synchronic basis

with respect to {Mi} and A1|Mi
= End(W ) then implies that a∗ is an element of A1.Consequently,

A1 is a quasi-star extended subalgebra. The same conclusion for A2 can be proved similarly.

To prove the second half of the proposition, let A1 be a quasi-star extended subalgebra, {Mi}
an irreducible component set for A1 such that elements from different Mi’s are orthogonal to one

another. When A2 is a quasi-star extended subalgebra, the argument is similar. Now from the proof

of Lemma 5.1, we notice that for our purpose it suffices to show that there exists an orthonormal

synchronic basis with respect to {Mi} . The existence of such a basis is proved as follows.

Let {xj1} be an orthonormal basis of M1 and
⋃

i {xji|j = 1, 2, · · · } a synchronic basis with

respect to {Mi}. If a ∈ A1 and a∗ exists, then we have a∗ ∈ A1. As a result, we can write

axji =
∑

k

xkiakj, a
∗xji =

∑

k

xkibkj,

where akj, bkj are complex numbers independent of the index i. But {xj1} is an orthonormal basis
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of M1, so we have bkj = ajk. Now by the definition of adjoint operator we have

〈a∗xji, xli〉 = 〈xji, axli〉 .

It then follows that
〈
∑

k

xkiajk, xli

〉
=

〈
xji,

∑

k

xkiakl

〉
.

Now if we choose a ∈ A1 such that amn = δmlδnl, from this equation we obtain

〈xji, xli〉 = 0, for l 6= j;

and if we choose a ∈ A1 such that amn = δmjδnl, we obtain

〈xji, xji〉 = 〈xli, xli〉 .

Let 〈xji, xji〉 = α2
i (α1 = 1 by definition ), yji =

xji

αi
, it is then check that

⋃
i {yji|j = 1, 2, · · · } is

an orthonormal synchronic basis with respect to {Mi} .
Before going on to another topic, let us pause to investigate the finite dimensional case. In this

case, we have the following much better result.

Theorem 6.1 When W is finite dimensional, (A1, A2) is a TPP of End(W ) compatible with

the inner product if and only if (1) A1, A2 are star subalgebras of End(W ); (2) [A1, A2] = 0 and

A = A1 ∨A2.

Proof. The necessity follows from the first half of Proposition 6.3 directly. For the sufficiency,

according to the second half of Proposition 6.3, we need only to show that as A1(A2) module W

possesses a decomposition into an orthogonal sum of irreducible A1(A2) submodules. But this is a

direct consequence of the condition that A1, A2 are star subalgebras of End(W ). Indeed, if V ⊆W

is an A1(A2) submodule, then the orthogonal complement V ⊥ of V is also an A1(A2) submodule

and we have the orthogonal decomposition: W = V +V ⊥. Repeating this procedure, we will obtain

the desired decomposition after finite steps because W is finite dimensional.

Finally, for the completeness, we now investigate the concept of standard complete set of ob-

servables, the counterpart of standard complete set of operators.

Definition 6.5 A standard complete set of operators (r, t) of End(W ) is called a standard com-

plete set of observables if (1) both r and t are self-adjoint operators; (2) there exists a characteristic

set {Mi}(or {Nj}) of r ( or t ) consisting of subspaces orthogonal to one another.

Remark If W is finite dimensional, then the condition (1) implies the condition (2).
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The results listed below are about the relation between standard complete set of observables

and inner product compatible TPP. Proposition 6.5 is just a special instance of Proposition 4.3,

and the other propositions can be proved by similar argument as presented in Section 2. Here we

would rather omit the proof to avoid redundancy.

Proposition 6.4 If (r, t) is a standard complete set of observables of End(W ), then there

exists an inner product compatible TPP (A1, A2) of End(W ) containing (r, t) .

Proposition 6.5 Let (r, t) be a standard complete set of observables of End(W ), (A1, A2) and

(B1, B2) two inner product compatible tensor product partitions containing (r, t) . Then there exists

an isomorphism ϕ ∈ End(W ), diagonal with respect to the basis consisting of common eigenvectors

of r and t, such that B1 = ϕ · A1 · ϕ−1 and B2 = ϕ ·A2 · ϕ−1.

Definition 6.6 The complete sets of observables (r, t) and (r′, t′) are called complementary if

(1) Mi = M ′
i and all Mi’s are U−isomorphic normal Sr,r′ modules or (2) Nj = N ′

j and all Nj’s

are U−isomorphic normal St,t′ modules.

Proposition 6.6 An inner product compatible TPP contains complementary standard complete

sets of observables.

Proposition 6.7 If (r, t) and
(
r̃, t̃
)

are complementary standard complete sets of observables,

then there exists a unique inner product compatible TPP (A1, A2) such that r, r̃ ∈ A1 and t, t̃ ∈ A2.

VII. PRODUCT VECTOR SET AND RELATIVITY OF QUANTUM ENTANGLEMENT

Now we turn to consider the set of decomposable vectors related to a TPS. Decomposable and

indecomposable vectors correspond respectively to product and entangled states in physics. So

from physical point of view, it is meaningful to study this topic.

Definition7.1 Let (V1, V2,⊗) be a TPS of W. Then (V1, V2,⊗) is called nontrivial if

dimV1,dimV2 > 1 and the subset {u⊗ v|u ∈ V1, v ∈ V2} of W is called the decomposable vector

set related to it.

Definition 7.2 A nonempty subset S of W is called a product vector set if it is a decomposable

vector set related to some TPS (V1, V2,⊗) of W , and a nontrivial one if (V1, V2,⊗) is nontrivial.

Remark A product vector set of W is a nontrivial one if and only if it is a proper subset of W.

Definition 7.3 Let S be a product vector set, w an element of W. If w belongs to S, w is

called a product vector. Otherwise, it is called an entangled vector.

Remark According to the definition, when we call an element of W a product vector or an

entangled one we should have in mind a TPS. Rigorously speaking, in the above definition, w
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should be called a product vector or an entangled one with respect to the TPS related to which

S is a decomposable vector set. Indeed, whether an element is a product vector or not strongly

depends on what TPS is considered. This point will become clear as we proceed.

Obviously, every product vector set ofW contains a basis ofW. Conversely, we have the following

result.

Proposition 7.1 Every basis of W can be extended to a nontrivial product vector set if dimW

is not a prime number.

Proof. Let {wk} be a basis of W. dimW being not a prime number, we can choose subspaces

W1,W2 of W with dimW1,dimW2 > 1 and the respective bases {xj} , {yi} such that there exists

a bijective map f : {xj} × {yi} −→ {wk} . Extend f bilinearly to a map ⊗ : W1 ×W2 −→W. It is

then readily check that (W1,W2,⊗) is a TPS of W with respect to which wk is a product vector

for each k. This proves the proposition.

Corollary 7.1 An arbitrary element of W is a product vector with respect to some TPS, which

can be chosen to be nontrivial if dimW is not a prime number.

Corollary 7.2 An arbitrary element of W is a entangled vector with respect to some (nontrivial)

TPS if dimW is not a prime number.

Proof. Keep the same notation as in the proof of Proposition 3.3. Let w ∈ W. Choose a basis

{wk}of W such that w = w1 + w2 and choose a map f such that

f (x1, y2) = w1, f (x2, y1) = w2.

Then w = x1 ⊗ y2 + x2 ⊗ y1 is an entangled vector with respect to the TPS (W1,W2,⊗) .

Similarly, we can prove the following results.

Proposition 7.1′ Let W a space with inner product. Every orthonormal basis of W can be

extended to a nontrivial decomposable vector set related to an inner product compatible TPS if

dimW is not a prime number.

Corollary 7.1′ An arbitrary element of W is a decomposable vector with respect to some inner

product compatible TPS, which can be chosen to be nontrivial if dimW is not a prime number.

Corollary 7.2′ An arbitrary element of W is a entangled vector with respect to some (nontriv-

ial) inner product compatible TPS if dimW is not a prime number.

We denote by D(W ) the set of product vector sets of W, and denote by σ the map that sends

each TPS of W to the decomposable vector set related to it. We observe that equivalent TPP’s

have the same decomposable vector set. So σ naturally induces a map σ from T (W ) to D(W ) :

σ(V1, V2,⊗) = σ (V1, V2,⊗) .
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By definition σ is a surjective map. Thus σ · τ is a surjective map from P(W ) to D(W ). A proof

of the bijectivity of this map is now in order.

Remark Lemma 5.3 tells us that as far as product vector set is concerned considering only the

TPS of the form (W1,W2,⊗) with W1,W2 ⊆W does not cause any loss of generality.

Lemma 7.1 If (A1, A2) and (B1, B2) are two tensor product partitions such that στ(A1, A2) =

στ(B1, B2), then (A1, A2) = (B1, B2).

Proof. Let (W1,W2,⊗), (W ′
1,W

′
2,⊗′) be tensor product structures ofW associated with (A1, A2)

and (B1, B2) respectively. Denote by D and D′ the decomposable vector sets related to (W1,W2,⊗)

and (W ′
1,W

′
2,⊗′) respectively. Suppose that D = D′. We then have to show that either A1 = B1

and A2 = B2 or A1 = B2 and A2 = B1. Take a basis {xj} of W1 and a basis {yi} of W2. We

observe that when W1 or W2 is of one dimension the proof is trivial. So we exclude this case in

the following argument. Now let us proceed in steps as follows.

(1) W1 ⊗ y1 ⊆ W ′
1 ⊗′ y′1 for some y′1 ∈ W ′

2 or W1 ⊗ y1 ⊆ x′1 ⊗′ W ′
2 for some x′1 ∈ W ′

1. Consider

the elements x1 ⊗ y1 and x2 ⊗ y1 of D. Since D = D′ there exist x′1, x
′
2 ∈W ′

1 and y′1, y
′′
1 ∈W ′

2 such

that

x1 ⊗ y1 = x′1 ⊗′ y′1, x2 ⊗ y1 = x′2 ⊗′ y′′1 .

On the other hand, we have x1⊗y1+x2⊗y1 = (x1 + x2)⊗y1 ∈ D. This implies that x′1⊗′y′1+x′2⊗′

y′′1 ∈ D′, that is, x′1⊗′ y′1 +x′2⊗′ y′′1 is of rank one with respect to (W ′
1,W

′
2,⊗′). It then follows from

Proposition 1.1 that either {x′1, x′2} or {y′1, y′′1} is linearly dependent. Notice that both {x′1, x′2} and

{y′1, y′′1} cannot be linearly dependent since {x′1 ⊗′ y′1, x
′
2 ⊗′ y′′1} is linearly independent. We thus

conclude that either there exist a linearly independent set {x′1, x′2} ⊆ W ′
1 and a nonzero element

y′′1 ∈W ′
2 such that

x1 ⊗ y1 = x′1 ⊗′ y′1, x2 ⊗ y1 = x′2 ⊗′ y′1,

or there exist a linearly independent set {y′1, y′′1} ⊆W ′
2 and a nonzero element x′1 ∈W ′

1 such that

x1 ⊗ y1 = x′1 ⊗′ y′1, x2 ⊗ y1 = x′1 ⊗′ y′′1 .

If the first case happens, we assert, that W1 ⊗ y1 ⊆ W ′
1 ⊗′ y′1 for some y′1 ∈ W ′

2, and if the

second case happens, W1 ⊗ y1 ⊆ x′1 ⊗′ W ′
2 for some x′1 ∈ W ′

1. In fact, if dimW1 = 2 the assertion

is evidently true. If dimW1 > 2 consider the element xj ⊗ y1, j 6= 1, 2. Let xj ⊗ y1 = x′j ⊗′ y′′′1 . As

argued above either {x′1, x′i} or {y′1, y′′′1 } is linearly dependent, but not both. Now the assertion

clearly reduces to the claim that {y′1, y′′′1 } and
{
x′1, x

′
j

}
are respectively linearly dependent in the
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first and the second cases. Suppose, on the contrary, that
{
x′1, x

′
j

}
is linearly dependent in the

first case. Then there exists a complex number α such that xj ⊗ y1 = αx′1 ⊗′ y′′′1 . It then follows

that

(x2 + xj) ⊗ y1 = x′2 ⊗′ y′1 + αx′1 ⊗′ y′′′1 .

Since {x′1, x′2} and {y′1, y′′′1 } are both linearly independent, the right hand side is an element of rank

2 with respect to (W ′
1,W

′
2,⊗′) according to Proposition 1.1. But the left hand side is an element

of rank 1 with respect to (W1,W2,⊗). This contradicts the assumption that D = D′. The second

case can be dealt with in the same way.

In the following discussion, we assume that W1 ⊗ y1 ⊆ W ′
1 ⊗′ y′1 for some y′1 ∈ W ′

2. The

subsequent argument then proves that A1 = B1 and A2 = B2. If the other case happens, then a

similar argument will prove that A1 = B2 and A2 = B1.

(2) W1 ⊗ y1 = W ′
1 ⊗′ y′1 for some y′1 ∈ W ′

2. Let x′ be an arbitrary element of W ′
1. It suffices to

show that x′ ⊗′y′1 ∈W1 ⊗ y1. Actually, we have

x′1 ⊗′ y′1 = x1 ⊗ y1, x
′
2 ⊗′ y′1 = x2 ⊗ y1.

Then by a similar argument as presented above we can prove that x′ ⊗′y′1 = x ⊗ y1 for some

x ∈W1, that is x′ ⊗′y′1 ∈W1 ⊗ y1.

(3) There is a basis
{
x′j

}
of W1 and a nonzero element y′1 of W ′

2 such that xj ⊗ y1 = x′j ⊗′ y′1.

This is a direct consequence of (1) and (2).

(4) There exists a linearly independent subset {y′i} of W ′
2 such that x1 ⊗ yi = x′1 ⊗′ y′i for each i.

When i = 1 the conclusion has been proved. When i 6= 1 consider the element x1 ⊗ yi + x1 ⊗ y1 of

D. Let x1 ⊗ yi = x′′1 ⊗′ y′i. Then x1 ⊗ yi +x1⊗ y1 = x′′1 ⊗′ y′i +x′1⊗′ y′1 is an element of D′. It follows

that exactly one of the two sets {x′1, x′′1} and {y′1, y′i} is linearly dependent. Clearly, what we need

to show is that {x′1, x′′1} is linearly dependent. If, on the contrary, {y′1, y′i} is linearly dependent,

then we have y′i = αiy
′
1 for some αi ∈ C. As a result,

x1 ⊗ yi + x2 ⊗ y1 = αix
′′
1 ⊗′ y′1 + x′2 ⊗′ y′1 =

(
αix

′′
1 + x′2

)
⊗′ y′1.

This is a contradiction since the right hand side is an element of D′ but the left hand side is not

an element of D. Finally, it is evident that {y′i} is linearly independent since {x1 ⊗ yi} is linearly

independent.

(5) xj ⊗ yi = x′′j ⊗′ y′i for each i. We need only to consider the case where i, j 6= 1. Let

xj ⊗ yi = x′′j ⊗′ y′′i . We have to show that {y′i, y′′i } is linearly dependent. If this is not the case,



30

by considering the rank of the element x1 ⊗ yi + xj ⊗ yi we can prove that
{
x′1, x

′′
j

}
is linearly

dependent. It then follows that xj ⊗ yi + x1 ⊗ y1 belongs to D′. But when i, j 6= 1, the element

xj ⊗ yi + x1 ⊗ y1 does not lie in D. This contradicts the assumption that D = D′.

(6) xj ⊗ yi = x′j ⊗′ y′i for each i. By (5) we have xj ⊗ yi = x′′j ⊗′ y′i. Then by a similar argument

as presented in the proof of (4) we can show that
{
x′j, x

′′
j

}
is linearly dependent. So we can write

xj ⊗ yi = αx′j ⊗′ y′i, α ∈ C. Let us prove that α = 1. If i = 1 or j = 1, there is nothing to prove.

When i, j 6= 1, consider the element (x1 + xj) ⊗ (y1 + yi) of D. We have

(x1 + xj) ⊗ (y1 + yi) =
(
x′1 + αx′j

)
⊗′ y′i +

(
x′1 + x′j

)
⊗′ y′1.

As {y′1, y′i} is linearly independent, it then follows that
{
x′1 + αx′j , x

′
1 + x′j

}
is linearly dependent.

Consequently, α = 1. This proves the original assertion.

(7) A1 = B1 and A2 = B2. Let Mi = W1 ⊗ yi, M
′
i = W ′

1 ⊗′ y′i, xji = xj ⊗ yi, x
′
ji = x′j ⊗′ y′i. Then

{Mi} is an irreducible component set for A1 and
⋃

i {xji|j = 1, 2, · · · } is a synchronic basis with

respect to {Mi} . Indeed, we have obviously the direct sum decomposition W =
∑

i⊕Mi. Moreover,

since aMi = (aW1)⊗yi, ∀a ∈ A1, all Mi’s are irreducible A1 modules isomorphic to W1 and A1 has

the same matrix representation with respect to the bases {xji|j = 1, 2, · · · } , i = 1, 2, · · · . For the

same reason, {M ′
i} is an irreducible component set for B1 and

⋃
i

{
x′ji|j = 1, 2, · · ·

}
is a synchronic

basis with respect to {M ′
i} . But it follows from (3) that Mi = M ′

i and by (6) we have xji = x′ji.

Considering A1|Mi
= B1|Mi

= End(Mi), we then conclude that A1 = B1, and hence A2 = B2 since

A2 = A′
1, B2 = B′

1.

We are now in a position to present the following result on the relation among the TPP, the

TPS and the product vector set.

Theorem 7.1 τ and σ are both bijective.

Proof. By Lemma 7.1, σ · τ is injective. It follows that τ is injective. But we have proved that

τ is surjective, it is therefore bijective. σ is surjective by definition. For the bijectivity, just notice

that σ = (σ · τ) · τ−1. The claim then follows directly.

Remark This theorem shows that each product vector set is characterized by an unordered pair

{A1, A2} where (A1, A2) is a TPP.

In the remaining part of this section, we keep on studying the property of product vector set.

Proposition 7.2 Let D be a subset of W. Then D is a product vector set if and only if there

exist a TPP (A1, A2) of End(W ) and an nonzero element w of W such that D = A1A2w and

(A1w,A2w,⊗D) is a TPS of W, where ⊗D is defined as aw ⊗D bw = abw, ∀a ∈ A1, b ∈ A2.

Proof. If D is a product vector set, then there exist a TPP (A1, A2) and a TPS (W1,W2,⊗)
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associated with it such that

D = {u⊗ v|u ∈W1, v ∈W2} .

Take nonzero elements u ∈W1, v ∈W2 and let w = u⊗ v. By Lemma 3.1 W1,W2 are respectively

irreducible A1, A2 modules. So A1u = W1, A2v = W2 and hence D = A1A2w. On the other

hand, we have by definition aw ⊗D bw = au⊗ bv. It then follows directly that (A1w,A2w,⊗D) is

a TPS of W. The necessity is thus proved. For the sufficiency, just observe that D is exactly the

decomposable vector set related to the TPS (A1w,A2w,⊗D) .

Let ϕ be an automorphism of W and (A1, A2) a TPP. Then
(
ϕ ·A1 · ϕ−1, ϕ · A2 · ϕ−1

)
is also a

TPP. Moreover ϕ induces a map ϕ from P(W ) to P(W ) : ϕ(A1, A2) = (ϕ ·A1 · ϕ−1, ϕ · A2 · ϕ−1).

Lemma 7.2 If ϕ is an automorphism of W, then σ · τ · ϕ = ϕ · σ · τ .
Proof. Let (A1, A2) be a TPP and (W1,W2,⊗) a TPS associated with it. We assert

that (ϕW1, ϕW2,⊗ϕ) is a TPS associated with
(
ϕ ·A1 · ϕ−1, ϕ ·A2 · ϕ−1

)
, where ⊗ϕ = ϕ · ⊗ ·

(
ϕ−1 × ϕ−1

)
:

(ϕw1) ⊗ϕ (ϕw2) = ⊗ϕ (ϕw1, ϕw2) = ϕ (w1 ⊗ w2) , ∀w1 ∈W1, w2 ∈W2.

(ϕW1, ϕW2,⊗ϕ) is obviously a TPS. On the other hand, for all w1 ∈W1, w2 ∈W2, we have

(
ϕaϕ−1

)
((ϕw1) ⊗ϕ (ϕw2)) = ϕa (w1 ⊗ w2) = ϕ (aw1 ⊗ w2)

= (ϕaw1) ⊗ϕ (ϕw2) =
((
ϕaϕ−1

)
(ϕw1)

)
⊗ϕ (ϕw2) ,∀a ∈ A1,

and similarly

(
ϕbϕ−1

)
((ϕw1) ⊗ϕ (ϕw2)) = (ϕw1) ⊗ϕ

((
ϕbϕ−1

)
(ϕw2)

)
, ∀b ∈ A2.

The assertion then follows. Now it is clearly seen that στϕ(A1, A2) = ϕστ(A1, A2) is a direct

consequence of the definition of ⊗ϕ. This proves the lemma.

Lemma 7.3 Let (r, t) be a standard complete set of operators of A, {Mi}, {Nj} the char-

acteristic sets of r and t respectively. If (A1, A2) is a TPP containing (r, t) , then we have

Mi, Nj ⊆ στ(A1, A2).

Proof. According to Lemma 4.2, {Mi} and {Nj} are irreducible component sets for A1 and A2

respectively. Let {xji} be a synchronic basis associated with {Mi} and {Nj} . Then it follows from

Theorem 5.1 that there exists a TPS (W1,W2,⊗) associated with (A1, A2) such that for some i0, j0

Mi = W1 ⊗ xj0i, Nj = xji0 ⊗W2.
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This implies that Mi, Nj ⊆ στ(A1, A2).

Now we conclude this section by the following results about the construction of product vector

set.

Proposition 7.3 Let (r, t) be a standard complete set of operators of A (= End(W )), {Mi},
{Nj} the characteristic sets of r and t respectively, then there exists a product vector set D

containing Mi and Nj as subsets. Moreover, if we require, in addition, that for u ⊗ v ∈ D

r (u⊗ v) = (ru) ⊗ v, t (u⊗ v) = u⊗ (tv) , ((*))

then such product vector set is unique up to an automorphism of W , which is diagonal with respect

to the basis consisting of common eigenvectors of r and t.

Proof. Take a TPP (A1, A2) containing (r, t) and define D = στ(A1, A2). Then D meets the

requirement according to Lemma 7.3. This proves the first half of the proposition.

To prove the second half of the proposition, let (A1, A2) be a TPP and (W1,W2,⊗) a TPS

associated with it such that Mi, Nj ⊆ στ(A1, A2) = σ(W1,W2,⊗). We need to show that (A1, A2)

is determined uniquely up to an automorphism of W .

First we recall that by the definition of standard complete set of operators, there are two sets of

distinct complex numbers {λj} and {µi} and two decompositions of W into direct sum of subspaces

W =
∑

i

⊕Mi =
∑

j

⊕Nj

such that

Mi =
∑

j

⊕Cxji, Nj =
∑

i

⊕Cxji

where xji is the common eigenvector of r and t:

rxji = λjxji, txji = µixji.

Now, let us proceed in steps.

(1) There exist a basis {uj} of W1 and a basis {vi} of W2 such that Mi = W1 ⊗ vi and Nj =

uj ⊗W2. Since Mi ⊆ σ(W1,W2,⊗), there exist uj ∈W1 and vij ∈W2 such that xji = uj ⊗vij .Then

by the condition (*) we have

λjuj ⊗ vij = rxji = (ruj) ⊗ vij ,

µiuj ⊗ vij = txji = uj1 ⊗
(
tvij

)
,
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and hence

ruj = λjuj, tvij = µivij .

Now using the fact thatMi is a vector space one can easily prove that vij1
, vij2

are linearly dependent

for different j1, j2. Let W ′
1 be the subspace of W1 spanned by {uj} , it then follows that there exists

vi ∈W2 such that tvi = µivi and Mi = W ′
1 ⊗ vi. Notice that W1 ⊗ vi is included in the eigenspace

of t corresponding to the eigenvalue µi, which is just Mi. Thus we have

Mi = W ′
1 ⊗ vi ⊆W1 ⊗ vi ⊆Mi,

hence Mi = W1 ⊗ vi. Similarly, there exists uj ∈W1 such that Nj = uj ⊗W2. Finally, it is easy to

check that {uj} , {vi} are bases of W1 and W2 respectively.

(2) (A1, A2) is a TPP containing (r, t) .According to (1), {Mi} , {Nj} are irreducible component

sets of (A1, A2) , and {uj ⊗ vi} is a standard basis associated with them. The assertion then follows.

Finally, by Proposition 4.3, we conclude from (2) that (A1, A2) is determined uniquely up to an

automorphism of W . The conclusion then follows from Lemma 7.2.

Proposition 7.4 Let (r, t) be a standard complete set of observables of A (= End(W )), {Mi},
{Nj} the characteristic sets of r and t respectively, then there exists an inner product compatible

TPS whose decomposable vector set D contains Mi and Nj as subsets. Moreover, if we require, in

addition, that for u⊗ v ∈ D

r (u⊗ v) = (ru) ⊗ v, t (u⊗ v) = u⊗ (tv) ,

then such decomposable vector set is unique up to an automorphism of W , which is diagonal with

respect to the basis consisting of common eigenvectors of r and t.

The proof of this proposition is similar to that of Proposition 7.3. We would rather omit it.

VIII. EXAMPLES FOR RELATIVITY OF QUANTUM ENTANGLEMENT

In this section, we will analyze three examples as an illustration of the theory developed above.

The first example concerns the so called Bell states, the second one deals with entanglement in

Bargmann space, and the third one is about entanglement with respect to the coordinate of mass

of center mentioned in the introduction. In the subsequent discussion, following the physical

convention, we will sometimes call a vector a state.
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A. Entanglement of Bell States

Now let us study the first example that has been considered extensively, but not rigorously from

mathematical point of view, by Zanardi et al[4].

Consider the system SAB consisting of two spin 1

2
particles labelled by A and B respectively.

We will not be interested in the dependence of the wave functions on the coordinates. For a spin

1

2
particle, the spin operator

−→
S takes the form (~ = 1)

−→
S =

1

2
−→σ =

1

2
(σx, σy, σz), (1)

where

σx =


 0 1

1 0


 , σy =


 0 −i
i 0


 , σz =


 1 0

0 −1


 (2)

are Pauli matrices. Conventionally, the two eigenvectors of Sz are denoted by |↑〉 , |↓〉 , which

belong to the eigenvalues 1

2
and −1

2
respectively. To distinguish different particles, for operators

we introduce an upper script and for states we introduce a lower script. For example, σA
z denotes

the spin operator for particle A and |↑〉B denotes the eigenvector of σB
z .

Let V1 be the vector space spanned by {|↑〉A , |↓〉A} and V2 the vector space spanned by

{|↑〉B , |↓〉B} . Then the space of states of the system SAB, which we denote by W, has a God

given inner product compatible TPS (V1, V2,⊗0) : W is taken or defined to be the vector space

spanned by the linearly independent set

{|↑〉A ⊗0 |↑〉B , |↑〉A ⊗0 |↓〉B , |↓〉A ⊗0 |↑〉B , |↓〉A ⊗0 |↓〉B} ,

which is usually written as

{|↑〉A |↑〉B , |↑〉A |↓〉B , |↓〉A |↑〉B , |↓〉A |↓〉B} .

We call this TPS God given because we are not able to define the above four vectors definitely

as elements of W. As a matter of fact, they are tacitly understood as the common eigenstates of

σA
z and σB

z . But the problem is still there: the phase is not and cannot be determined. We have

seen that from mathematical point of view, the bilinear map ⊗0is not well defined. But as far as

physics is concerned, we have no choice but take it for granted and make it the starting point of

our discussions in this paper.
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The so called Bell states are defined as follows:

∣∣ψ±
〉
AB

=
1√
2

(|↑〉A |↓〉B ± |↓〉A |↑〉B) , (3)

∣∣φ±
〉
AB

=
1√
2

(|↑〉A |↑〉B ± |↓〉A |↓〉B) .

Obviously, they are maximally entangled states with respect to the TPS (V1, V2,⊗0) . The Bell

states form an orthonormal basis of W, so according to Proposition 7.1′, there exists an inner

product compatible TPS with respect to which they are product states. Let us explicitly construct

such tensor product structures.

Let Rx(π) be the two bi-particle rotation operator through the angle π about the x−axis. We

have

Rx(π) =


 0 i

i 0


⊗0


 0 i

i 0


 . (4)

Notice that Rx(π) is unitary and self-adjoint as well. It is easy to check that

Rx(π)
∣∣ψ±

〉
AB

= ∓
∣∣ψ±

〉
AB

, Rx(π)
∣∣φ±

〉
AB

= ∓
∣∣φ±
〉
AB

. (5)

Denote by M1,M2 the subspaces spanned by {|ψ±〉AB} and {|φ±〉AB} respectively, and by N1, N2

the subspaces spanned by {|ψ+〉AB , |φ+〉AB} and {|ψ−〉AB , |φ−〉AB} respectively. Then we have

the orthogonal decomposition

W = M1 ⊕M2 = N1 ⊕N2.

Now let Sz = SA
z + SB

z . Clearly we have

S2
z

∣∣ψ±
〉
AB

= 0, S2
z

∣∣φ±
〉
AB

=
∣∣φ±
〉
AB

. (6)

It then follows that
(
Rx(π), S2

z

)
is a standard complete set of observables, and {M1,M2} , {N1, N2}

are characteristic sets of Rx(π) and S2
z respectively. According to Proposition 6.4, there exists an

inner product compatible TPS whose decomposable vector set contains M1,M2, N1, N2.

Let us first construct an inner product compatible TPP contains
(
Rx(π), S2

z

)
. Using the previous

notation, let x11 = |ψ+〉AB , x21 = |ψ−〉AB , x12 = |φ+〉AB , x22 = |φ−〉AB . Define the subalgebras

A1, A2 ⊆ End(W ) as follows. An element a belongs to A1 if and only if

a (x11, x21) = (x11, x21)


 a11 a12

a21 a22


 , (7)

a (x12, x22) = (x12, x22)


 a11 a12

a21 a22


 ; (8)
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and an element b belongs to A2 if and only if

b (x11, x12) = (x11, x12)


 b11 b12

b21 b22


 , (9)

b (x21, x22) = (x21, x22)


 b11 b12

b21 b22


 , (10)

where aij , bij are arbitrary complex numbers. It is straightforward to check that (A1, A2) is the

desired TPP and {M1,M2} , {N1, N2} are irreducible component sets of (A1, A2) .

Next we construct an inner product compatible TPS associated with (A1, A2) . Take W1 =

M1,W2 = N2 and define a bilinear map ⊗ from W1 ×W2 to W such that

x11 ⊗ x21 = x11, x11 ⊗ x22 = x12, (11)

x21 ⊗ x21 = x21, x21 ⊗ x22 = x22. (12)

Then (W1,W2,⊗) is an inner product compatible TPS. Notice that

M1 = W1 ⊗ x21, M2 = W1 ⊗ x22, (13)

N1 = x11 ⊗W2, N2 = x21 ⊗W2. (14)

Hence, M1,M2, N1, N2 are included in the decomposable vector set related to (W1,W2,⊗) . The

construction is thus completed.

Before leaving this example, we would like to point out that
{
σA

x σ
B
x , σ

A
z σ

B
z

}
is also a standard

complete set of observables. In fact, we have

σA
x σ

B
x

∣∣ψ±
〉
AB

= ±
∣∣ψ±

〉
AB

, σA
x σ

B
x

∣∣φ±
〉
AB

= ±
∣∣φ±

〉
AB

,

σA
z σ

B
z

∣∣ψ±
〉
AB

= −
∣∣ψ±

〉
AB

, σA
z σ

B
z

∣∣φ±
〉
AB

= +
∣∣φ±

〉
AB

.

It follows that
(
σA

x σ
B
x , σ

A
z σ

B
z

)
is a standard complete set of observables with the same characteristic

sets {M1,M2} , {N1, N2} as defined above and the above constructed (A1, A2) is also an inner

product compatible TPP containing
{
σA

x σ
B
x , σ

A
z σ

B
z

}
. In this sense, we may well call

(
Rx(π), S2

z

)

and
(
σA

x σ
B
x , σ

A
z σ

B
z

)
equivalent.

B. Entanglement in Bargmann Space

Let W be the space C [x1, x2] of two variable polynomial functions that span a Berrgmann

space of rank 2 [11]. Notice that here an element of C [x1, x2] is regarded as a function rather
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than a polynomial in the indeterminates x1 and x2.In studying this example, we have in mind the

composite system of two one dimensional subsystems. Indeed, W can be viewed in some way as a

subspace of the space of states of such a system, x1 and x2 understood as coordinates of the two

subsystems. This point of view was most recently casted on the narrowing effects of wave packets

of two free particles due to their relative entanglement.

Obviously,
{
xj

1
xi

2|j, i = 0, 1, · · ·
}

is a basis of W. Take W1 = C [x1] , W2 = C [x2] and define

the bilinear map ⊗1from W1 × W2 to W : xj
1
⊗1 x

i
2 = xj

1
xi

2. Then (W1,W2,⊗1) is a TPS of

W, and actually this TPS is taken for granted. But we notice that if we define a bilinear map

⊗′
1: W1 ×W2 −→ W such that xj

1
⊗′

1 x
i
2 = αjix

j
1
xi

2 where αji is a nonzero complex number, then

(W1,W2,⊗′
1) is also a TPS. The state xj

1
xi

2 is a product state with respect to both of the two tensor

product structures. Nevertheless, the decomposable vector states related to the two tensor product

structures are not identical when all αji’s are not identical. For example, if α11 = α12 = α21 = 1,

but α22 = 2, then

x1x2 + x1x
2
2 + x2

1x2 + x2
1x

2
2 =

(
x1 + x2

1

)
⊗1

(
x2 + x2

2

)
,

x1x2 + x1x
2
2 + x2

1x2 + x2
1x

2
2 = x1 ⊗′

1

(
x2 + x2

2

)
+ x2

1 ⊗′
1

(
x2 +

1

2
x2

2

)
. (15)

So this is a product state with respect to (W1,W2,⊗1) but an entangled state with respect to

(W1,W2,⊗′
1) . This result is no surprise. In fact, when all αji’s are not identical, generally speaking,

(W1,W2,⊗1) and (W1,W2,⊗′
1) are associated with inequivalent tensor product partitions. This

being true, the result is then implied by Lemma 7.1. This point can be argued as follows.

For simplicity, we suppose that αj0 = α0i = 1 for all j, i. Let Mi be the space spanned by
{
xj

1
xi

2|j = 0, 1, · · ·
}
, Nj the space spanned by

{
xj

1
xi

2|i = 0, 1, · · ·
}
. For {αji} ⊆ C, define a TPP

(A1 (α) , A2 (α)) such that (1) {Mi} , {Nj} are irreducible component sets for A1 (α) and A2 (α)

respectively; (2)
{
αjix

j
1
xi

2

}
is a standard basis associated with {Mi} , {Nj} . Now one can check

that (W1,W2,⊗′
1) is associated with (A1 (α) , A2 (α)) and

A1 (α) = ϕ ·A1 (1) · ϕ−1, A2 (α) = ϕ ·A2 (1) · ϕ−1

where ϕ is an automorphism of W such that

ϕ
(
xj

1
xi

2

)
= αjix

j
1
xi

2.

When all αji’s are not identical, ϕ is not an identity map. So it is highly possible that

(A1 (α) , A2 (α)) and (A1 (1) , A2 (1)) are not equivalent.
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C. Entanglement with respect to Mass of Center Coordinate

Now let us study another TPS of W as a special case of the above example. The discussion is

motivated by the simple consideration that a separable wave function of bi-particle system with

respect to the two position coordinates can be regarded as an entangling one with respect to the

center of mass and relative coordinates.

Let X be the “coordinate of center of mass”, x the “relative coordinate”:

X =
1

2
(x1 + x2), x = x1 − x2. (16)

One can check that
{
Xjxi|j, i = 0, 1, · · ·

}
is also a basis of W. Consider the operators X · ∂

∂X
and

x · ∂
∂x
, where ∂

∂X
and ∂

∂x
are derivatives with respect to X and x respectively . By definition we

have

(
X · ∂

∂X

)
Xjxi = jXjxi, (17)

(
x · ∂

∂x

)
Xjxi = iXjxi.

Let Mi, Nj be the space spanned by
{
Xjxi|j = 0, 1, · · ·

}
and

{
Xjxi|i = 0, 1, · · ·

}
respectively.

Then it follows that
(
X · ∂

∂X
, x · ∂

∂x

)
is a standard complete set of operators, and {Mi} , {Nj} are

the characteristic sets of X · ∂
∂X

and x · ∂
∂x

respectively.

According to Proposition 4.1, there is a TPP containing
(
X · ∂

∂X
, x · ∂

∂x

)
. Let us explicitly

construct such a TPP. We define the extended subalgebras A1, A2 ⊆ End(W ) as follows. An

element a belongs to A1 if and only if

aXjxi =
∑

k

Xkxiakj, (18)

and an element b belongs to A2 if and only if

bXjxi =
∑

k

Xjxkbki, (19)

where akj ∈ C is independent of i, bki ∈ C is independent of j, and {k|akj 6= 0} , {k|bki 6= 0} are

both finite sets for each j and each i respectively. According to the proof of Proposition 4.1,

(A1, A2) is a TPP containing
(
X · ∂

∂X
, x · ∂

∂x

)
.

Now take W ′
1 and W ′

2 to be the subspaces spanned by
{
Xj
}

and
{
xi
}

respectively, and define

a bilinear map ⊗2 : W ′
1 ×W ′

2 −→ W such that Xj ⊗2 x
i = Xjxi. It is then readily check that

(W ′
1,W

′
2,⊗2) is a TPS associated with (A1, A2) .
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Finally we point out that the decomposable vector set related to (W ′
1,W

′
2,⊗2) and that related

to (W1,W2,⊗1) are different. For example, we consider the state x1x2. We have

x1x2 =
2X + x

2

2X − x

2

= X2 ⊗2 1 − 1

4

(
1 ⊗2 x

2
)
. (20)

So it is an entangled state with respect to (W ′
1,W

′
2,⊗2) . But it is a product state with respect to

(W1,W2,⊗1) .

The above argument demonstrate a simple but profound physical fact about the relativity

of entanglement : generally speaking, the factorized wave function Ψ(x1, x2) = Ψ1(x1)Ψ2(x2) is

entangled with respect to the ”coordinate of center of mass” (X,x) since generally there are no

functions Φ1,Φ2 such that

Ψ(x1, x2) = Φ1(X)Φ2(x) (21)

though we do have

Ψ(x1, x2) = Ψ1(X +
x

2
)Ψ2(X − x

2
).

Remark If we interprets X,x as creation operators and ∂
∂X
, ∂

∂x
as annihilation operators respec-

tively, then the above discussion is applicable to settling down the issue of entanglement of Fock

states, as promised in the introduction.

IX. CONCLUDING REMARKS

We have presented a rigorous algebraic description for the relativity of quantum entanglement

due to the non-uniqueness of TPS of a vector space. Physically, there are many ways to subdivide

the Hilbert space of a large system according to various physical purposes. In practice, different

partitions correspond to different choices of observables in the measurement. According to the

above discussion, this means that the notion of entanglement depends on the definition of tensor

product in association with the subsystem partition. This reveals the seemingly exotic fact that

multi-particle states that are entangled with respect to some subsystem partition may be separable

with respect to different observations in the measurement. For example, a symmetrized state for

two boson system is obviously an entangled state in the coordinate representation, but it is a

tensor product of two number state with respect to some TPS. We think that it is safe to say
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that the present paper has made clear the cloudy physical concept– quantum entanglement in a

mathematical way.

Finally, we would like to remark that in this paper we have made efforts not to leave out

the infinite dimensional case, avoiding the argument’s being too restrictive and excluding many

physically interesting examples. But on the other hand, we have completely sacrificed topology

for mathematical simplicity. So from mathematical point, especially analytical point of view, the

present paper has left much to be desired. It seems desirable to study the inner product compatible

TPS of an infinite dimensional Hilbert space H. Then we will have to consider the topology of

L(H), the set of linear operators on H, and to study some kind of partition of L(H) related to the

inner product compatible TPS of H we might need to enter the field of operator algebra.
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